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Abstract-It is observed that one of the integral conservation laws of elastostatics, the so-called M -integral
conservation law, has certain special features which make it possible to apply this conservation law for a
class of plane elastic crack problems in order to calculate the elastic stress intensity factor in each case
without solving the corresponding boundary value problem. The main characteristics which a problem must
have in order for the approach to be useful are (1) for points very near to the origin of coordinates, the
known elastic stresses are O(r"') where r is the radial coordinate and 'Y" 1, (2) for points very far from the
origin, the known elastic stresses are O(r-') where 'Y" I, and (3) the boundary of the body is made up of
radial lines on which certain traction and/or displacement conditions are satisfied. The approach is
demonstrated by determining the stress intensity factors for four familiar elastic crack problems directly
from the conservation law, and then four similar additional applications of the M -integral conservation law
are discussed.

INTRODUCTION

Some conservation laws applicable in elastostatics were recently discovered by Knowles and
Sternberg[l] who applied Noether's theorem on invariant variational principles in conjunction
with the stationary potential energy principle of elastostatics. The mathematical statement of
each conservation law is that the integral of a certain functional of the elastic field over the
bounding surface of a regular closed subregion of the deformed elastic solid equals zero.
According to Eshelby[2], Giinther[3] had previously obtained the same set of elastostatic
conservation laws. In a subsequent paper, Budiansky and Rice[4] considered the surface
integrals which appear in the conservation laws over the boundary of a subregion of the body
which contains a cavity. They showed that in this case the surface integrals were nonzero and,
in fact, that they could be interpreted as potential energy release rates associated with
translation, rotation and expansion of the cavity. In this paper, certain special features of one of
the conservation integrals, the so-called M-integral, are exploited to determine stress intensity
factors for a variety of elastic crack problems.

THE M-INTEGRAL

General properties
Consider an elastic solid which is in a state of plane two-dimensional deformation. The

displacement vector Uj depends only on the rectangular Cartesian coordinates Xl and X2. For
any simple curve C in the plane of deformation, the value of M is defined by the line integral

(1)

where W is the elastic energy density, ni is the unit normal to C which (by convention) is
directed to the right as C is traversed in a specified direction, and Tj is the traction acting on the
material to the left of C. The elastic energy W depends on the strain Eii = (Ui.i + ui,;)/2 and the
stress O'ij =O'ji, which is related to the traction on C according to O'ijni =1j, satisfies the
stress-strain relation O'ij = aW/aEjj and the equilibrium equation O'jiJ = 0 at all points of the body.
As the form of the equiiibrium equation implies, body forces are not considered. It can be
shown (see, e.g. [1,2]) that if the material is homogeneous and if 2W =O'ijUj.i then M =0 for any
closed contour C which bounds a simply-connected region of the body. Thus, M = 0 is one of
the so-called conservation laws of elastostatics[1] and it applies for homogeneous linear elastic
materials which are in a state of plane infinitesimal deformation. The material need not be
isotropic, although material isotropy will be assumed for all examples to be considered here.

The property of path-independence of M in (1) follows directly from the conservation law.
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Consider two paths C1 and C2 in the body with common end-points and which together enclose
a simply-connected region, but which are otherwise arbitrary. The sense of traversal is the same
for the two paths, that is, from one common end-point to the other. The conservation law
implies that M = 0 for the closed path C1 - C2, where the minus sign indicates that part of the
closed contour (in this case C2) is traversed in a negative sense. It follows immediately from a
fundamental property of line integrals that if M(C\ - C2) = 0 then M(C\) = M(C2). Therefore,
M is a path-independent line integral. If the region enclosed by a contour C contains a cavity
then the value of M for this contour is nonzero, in general. Budiansky and Rice [4] have shown
that the value of M is the rate of potential energy release for self-similar expansion of the
cavity in this case. Actually, M is a measure of energy release rate with respect to the relative
scale change dLIL, where L is any characteristic length of the cavity.

In this study, the interpretation of the M-integral as an energy release rate does not playa
significannole. The property that M = 0 for any closed contour is here exploited to determine
stress intensity factor solutions for a number of cracked elastic solid configurations of interest
in fracture mechanics. It will be shown that, for a certain class of elastic crack problems, the
M -integral has several special features which make it possible to relate the crack tip stress
intensity factor to the applied loading without actually solving the corresponding elastostatic
boundary value problem. The approach requires a choice of contour C such that contributions
to M from the various segments of C can be calculated directly in terms of either the stress
intensity factor or the imposed load and constraint conditions. Rice has made similar use of the
I -integral on pp. 231-232 of [5], and some of the applications of the M-integral to be discussed
here have been anticipated by Eshelby [2]. In the next section, a few of the key features of the
M -integral are noted. The general approach is then demonstrated by calculating stress intensity
factors for a number of crack problems which have been analyzed previously by more
traditional methods and finally the results for a number of previously unsolved problems are
determined.

Special features
Suppose that the two-dimensional body under consideration contains a crack, and that the

coordinates of a particular crack tip are Yh Y2 with l = YiYi> O. The contribution to M from a
vanishingly small path which begins on one crack face, surrounds the crack tip, and terminates
on the opposite face is y;Ji where Ii is the vector line integral

(2)

Furthermore, if the crack faces coincide with radial lines in the coordinate system being used
then the value of yJi is simply ±yI where the algebraic sign is determined from the details of
the problem and I is Rice's integral of fracture mechanics [5]. It was shown by Rice [5] that I is
independent of path for paths which originate on one traction-free crack face, surround the tip,
and terminate on the opposite traction-free face. Furthermore, J is equal to Irwin's potential
energy release rate G for coplanar crack growth and is therefore related to the plane strain
mode I and mode II stress intensity factors through Irwin's relationship[6]

1- /12 2 2
I= G=~[KJ +K ll ] (3)

where E and /I are Young's modulus and Poisson's ratio for the isotropic elastic material. For
the special case Y = 0, the crack tip is at the origin and there is no contribution to M from a
vanishingly small path surrounding the tip. Eshelby [2] noted that this last feature of M could be
used to advantage in certain cases, as will be seen in the subsequent discussion of example
problems.

It is clear from (I) that the first term in the integrand of the M -integral vanishes on any part
of C which coincides with a segment of a radial line in the coordinate system used. At any point
on a radial segment, the normal nj is perpendicular to the position vector which has components
Xi, so that Xjni = 0 there. The second term in the integrand of the M -integral also vanishes on a
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part of C which coincides with a segment of a radial line under certain conditions. For example,
this term is identically zero on a radial segment if the traction Tj vanishes there, if the
displacement is uniform so that Uj.jXj = 0 there, or if a component of the traction vanishes and
the complimentary component of displacement is uniform. The result that there is no contribu
tion to M from parts of C which coincide with radial lines under a variety of conditions can be
used to great advantage, as will be demonstrated.

Next, the contribution to M from a part of C which coincides with a segment of a circle
centered at the origin is considered, with particular emphasis on circular segments of infinitely
large or infinitesimally small radius. It is well-known that the plane elastic stresses due to a
concentrated force acting at the origin in an unbounded body or at the apex of a wedge vary
with radial distance r = (X,2 + X2

2
)112 as r- I for any fixed value of angle 8 = tan- 1

(X2/X,), The
strain energy density W therefore varies with radial distance as r-2

• On the other hand, for an
increment d8 in the angle 8, the term Xjni ds which multiplies W in the integrand of the
M -integral is equal to r2 d8 on a circular segment of radius r. If a similar argument is applied to
the second term in the integrand of M, then it becomes clear that the integrand is independent
of r for a concentrated force in an unbounded body or at the apex of a wedge, and the
evaluation of the contribution to M from a circular arc in this case amounts to integration of
the known angular variation of the elastic fields over some appropriate range of angle 8. It is
noteworthy that such a contribution is well-defined even when the arc has an infinitely large or
an infinitesimally small radius. Thus, with a view toward applying the M -integral in the analysis
of elastic crack problems, if parts of the path C are circular arcs along which the elastic field is
indistinguishable from the known elastic field of a concentrated force then the contribution to
M from these parts of C can be determined without solving the elastic crack boundary value
problem. It is known that the dependence of the stresses on radial distance r for a discrete
elastic dislocation at the origin is also r- I

• Therefore, if parts of C are circular arcs along which
the elastic field is indistinguishable from that due to a discrete dislocation, then contributions to
M from these parts of C can also be directly determined.

In view of the special properties of the M-integral which were cited above, the procedure
for applying the conservation law M = 0 to determine elastic crack tip stress intensity factors
should be clear. For the specific problems to be considered, closed contours C can be found
which are entirely made up of radial lines along which the integrand of (1) is zero, circular arcs
along which the elastic fields are essentially those of a concentrated force or discrete
dislocation, and vanishingly small paths around the crack tip which yield a contribution
proportional to the energy release rate G. Under suitable circumstances, the stress intensity
factor corresponding to this value of G may be determined according to (3). The procedure is
next indicated for several such problems.

REPRESENTATIVE STRESS INTENSITY FACTOR CALCULATIONS

A result which is of use in analyzing many plane problems of the type being considered here
is the value of the M-integral for a circular arc in a wedge loaded by a concentrated force at its
apex, and this result is derived for the general configuration before specific problems are
examined. Consider a wedge of apex angle 2a which is subjected to an axial force Fa and a
transverse force Ft at its apex, as shown in Fig. l(a). As is shown in the book by Timoshenko
and Goodier[7], the resulting in-plane stress components referred to polar coordinates (r, 8) are

2Fa cos 8 2Ft sin (J
0' = -

" r(2a + sin 2a) r(2a - sin 2a)

O'ell = O're = o.

(4)

(5)

For wedge deformation under plane strain conditions without rigid body rotation, the integrand
of M corresponding to the stress state [4, 5] is

I (1- jl2) 2
Wx·n· - TkUk oX· = - - --- rO'

, I .f I 2 E " (6)
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Fig. l. The corner loaded elastic wedge and a straight edge dislocation are shown in (a) and (b),

respectively, and the corresponding values of M along f and f' are given in eqns (7) and (I I).

on the circular arc f of radius r in Fig. I(a). The result of integrating (6) on f for -a ,,;;; 6 ,,;;; a is

M(f) = _ I - ,,.2 { F/ + F,l }
E (2a +sin 2a) (2a - sin 2a) .

(7)

A second general result which is of use in analyzing a number of problems is tbe value of
the M.integral for a circular arc centered at an edge dislocation, as shown in Fig. I(b). The
Burger's displacement of the edge dislocation is b with the sense shown and the circular arc f'
has radius r and angular range 8, ,,;;; () ,,;;; 62• Tbe in-plane stress components referred to the polar
coordinates (r, 6) are

Eb sin ()
411'(1- v2)r

Eb cos 6
UrlJ = 411'(1 _ 1/2)r'

The integrand of M corresponding to the stress state (8, 9) and plane strain conditions is

on the circular arc f' of radius r, and the result of integrating (10) on f' for 61~ 6 ~ 62 is

(8)

(9)

(10)

(II)

With the aid of tbe general results in (7) and (II), a number of stress intensity factor solutions may
now be written down without further calculation.

Demonstration of procedure
Four plane elastic crack problems are represented by the sketches in Fig. 2. Tbe crack tip

stress intensity factors for these problems are known exactly, of course, and tbey may all be
found in [8] where original source references are given. However, each of the problems
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Fig. 2. Some standard elastic crack problems for which the conservation law M(Cj = 0 leads directly to
stress intensity factor results.

represented in Fig. 2 is such that the stress intensity factor can be calculated simply and
directly by application of the conservation law M =0, and it would seem worthwhile to first
demonstrate the approach for these familiar problems. In each case, a suitable closed contour C
is shown, where it is assumed that the radii of the small and large circular arcs of C are
arbitrarily small and large, respectively, as compared to the characteristic length I in each
problem.

For the semi-infinite crack with point loads acting on the crack faces in Fig. 2(a), there is no
contribution to M from the straight parts of C along the crack faces because these are radial
segments on which traction is zero. Furthermore, there is no contribution from the infinitely
large circle because the applied loads are self-equilibrating and therefore the stress components
are 0(,-1) as ,~r.tJ for this configuration. It is reasonable to expect that the stress state
arbitrarily close to the load points will be indistinguishable from the stress state in a half-plane
(i.e. a wedge with a = 11'/2) with a normal boundary load. If the general result (7) is applied for
the small arcs around the load points with Fa = P, F, = 0 and a = 11'/2 and if due account is
taken of the sense of the normal ni, then

M(C) =2 1_,,2 p
2
-IG =0

E 11'
(12)

and, from Irwin's relationship (3), the well-known mode I stress intensity factor result is
obtained, that is, K r = P".J(2/11'l). The equivalent mode II problem with tangential crack face
loads may be analyzed in much the same way.

A ligament between two semi-infinite coplanar cracks which carries a total force P is shown
in Fig. 2(b). The force P in the ligament arises from the application at remote points of the body
of surface tractions or body forces with resultant force P in the direction shown and zero
resultant moment. If it is assumed that the stress distribution in the ligament depends on the
resultant of the remotely applied tractions or body forces but is independent of the remote
traction or body force distribution, then the remote elastic field may be viewed as being that
due to a normal concentrated force of magnitude P acting on the edge of an otherwise traction
free half-plane. As before, there is no contribution to M from the parts of C along the crack
faces, and the remote elastic field is that of a normal point force acting on the edge of a
half-plane. If the result (7) is applied for the remote contour with Fa = P, F, = 0 and a = 11'/2,
then M (C) = 0 implies

1- Jl2 p 2 I
-2---+2-G =0

E 11' 2
(13)
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which leads immediately to the known stress intensity factor result K1 = P\!(2/1Tl). The
analysis of the symmetrically point loaded finite crack shown in Fig. 2(c) involves steps
virtually identical to those followed in the preceding two examples, and all details are omitted.
The stress intensity factor for this case is K1 = P\!(2/1TI).

The wedged-open crack model shown in Fig. 2(d) has played a central role in the
development of cleavage fracture initiation models. Contributions to the value of M from parts
of C along the crack faces vanish because these are radial lines on which the traction is zero.
Also, contributions to M from parts of C along the wedged-open section vanish because these
are radial lines on which the tangential component of traction is zero and the normal component
of displacement is uniform. The internal stresses at the left end of the crack are expected to be
square-root singular but, as noted by Eshelby [2], if the origin of coordinates is located at this
point, the factor Xi in the integrand of M renders the integrand nonsingular and there is no
contribution to M from the small arcs at the origin. For the remote contour, the general result
(II) may be applied with b = B, OJ = - 37T/2 and O2 = 1T/2. Application of the conservation law
M = 0 for the path C in Fig. 2(d) leads to the relation

(14)

and the corresponding stress intensity factor is K 1 = BE/[( 1- 1/)2\!(21T1)].

Further applications of M = 0
The four plane elastic crack problems represented in Fig. 3 are of the type which can be

analyzed by applying the conservation law M = O. Consideration of the corner loaded edge
crack shown in Fig. 3(a) was undertaken in an attempt to explain a particular phenomenon in
indentation fracture. It is well-known that if a hard indenter is pressed normally into the surface
of a brittle solid then cracks form near the indenter, with different types of fractures occurring
for different indenter configurations and material characteristics. Of particular interest here are
certain cracks which open along planes which are normal to the solid surface and which contain
the indenter axis, that is, the so-called median planes. In a report on a study of indentation
fracture of cemented carbides [9], it was noted that some of these cracks experience greater
growth during reduction of the normal indentation force than during the increase of the
indentation force to its maximum value. In Fig. 3(a), the indentation force is represented by the
normal force of magnitude 2P, and the opposed tangential forces of magnitude Q are included
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Fig. 3. Additional elastic crack problems which can be analyzed by means of the conservation law
M(C)=O.
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to represent the tendency for the inelastically deforming material directly beneath the indenter
to flow outward.

The stress intensity factor for this problem is determined by direct application of M =0 for
the contour C shown in the sketch. To compute the contribution to M from the small arcs
around the corner points XI = ±O, X2 = 0, the general result (7) with a = 7T/4, Fa = -(P + Q)/Y2
and FI = +(P - Q)/Y2 is employed. Likewise, the contribution to M from the large arc
centered at the origin is given by (7) with a = 7T/2, Fa = - 2P and F, == O. The only other
contribution to M comes from the vanishingly small path surrounding the crack tip. If the
energy release rate is expressed in terms of the mode I stress intensity factor according to (3)
then application of the conservation law yields the result that

(15)

If (15) is considered in terms of possible load paths in the (P, Q)-plane then some interesting
results emerge (see Fig. 4). It is clear that K[ Y l == 0 along the line Q == 2P/7T and, in fact, K[ Y l
is constant along any line with slope 2/7T. If the indenter geometry and material characteristics
are such that indentation is represented by load trajectory OA, then the load point continuously
moves in a direction of decreasing K[Y l, which suggests that the initiation and growth of an
indentation fracture is unlikely. On the other hand, if the geometry and material properties are
such that indentation is represented by load trajectory DB, then the load point continuously
moves in a direction of increasing K[ Y l. If it is assumed that crack growth occurs at a constant
value of Kf, say K fc , then loading along DB is accompanied by crack growth from zero initial
crack length, for example. If the variation of Q during reduction of the indentation force P is
such that unloading occurs along BO, then again the load point moves in a direction of
decreasing K[yl, which suggests a reduction in K[ below K[c and no further crack growth.
However, if the material properties and geometrical configuration are such that unloading (i.e.
reduction in P) occurs along BC then the load point continues to move in a direction of
increasing K[ Y l, which suggests that the crack could continue to grow as the indentation force
is reduced. While this model is consistent with the observation of indentation crack growth
during both increase and decrease of the indentation force under suitable conditions, it is far
from being a complete analysis of the phenomenon. Such an analysis would necessarily include
a determination of the dependence of Q on the indentation force, the geometry of the indenter,
and the elastic-plastic properties of the material.

A second problem which arises in the study of contact fracture is represented in Fig. 3(b). It
is assumed that a rigid surface with an irregularity in the form of a simple step of height 8 is
pressed against the initially plane surface of a solid. The resulting stress concentration at the
step is relieved by growth of a crack as shown. If it is assumed that the material is in contact
with the stepped indenter all along its edge X2 == 0 and that the indenter exerts no shear traction
on the edge X2 == 0 then the dependence of the mode II stress intensity factor Ku on step height

Q

o

C -
\

DIRECTION OF
INCREASING

KIff 2hr

A

----

p

Fig. 4. Possible loading and unloading paths for the corner loaded edge crack in Fig. 3(a). As discussed in
the text, crack growth is possible for both increasing and decreasing normal force P, depending on material

characteristics.
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~ may be determined from M = 0 for the path C shown. The contribution to M from the large
circular arc is given by (1I) with 81 = - 3Tr/2, 82 = -Tr/2 and b = 2~, and the only other
contribution to M arises from the small crack tip contour. In view of (3), the result of applying
M = 0 to this problem is

(16)

A similar edge-crack problem involving imposed displacements is represented in Fig. 3(c). Such
a crack might be viewed as being pryed open in a very stiff loading system or, on the
microscale, it is a standard example of a microcrack nucleated by a dislocation pile-up
mechanism (e.g. see pp. 29-31 of [10]). If the edge X2 =0 is free of normal traction and the part
of the e~ge XI> 0 is displaced uniformly an amount ~ with respect to the part XI < 0, then
application of M = 0 yields a mode I stress intensity factor identical in form to (16), that is,
K[ = E~/[2(1 - p2)y'(Trl)].

Finally, the plane problem of a semi-infinite crack in a half-plane with traction free surface
represented in Fig. 3(d) is considered. The crack is inclined by an angle 13 to the free surface
normal, and the remaining ligament of thickness h = l cos 13 transmits a tensile force P and a
shear force Q. In this context, P and Q are called tensile and shear forces, respectively,
because of their orientation with respect to the free edge X2 = O. In general, this is a mixed mode
crack problem and, although the energy released per unit coplanar crack extension G may be
calculated by application of the conservation law, the separate stress intensity factors K[ and
Ku cannot be deduced. However, certain crack growth criteria for biaxial loading conditions
rely on a knowledge of the variation of energy release rate with direction of crack growth, so
that the calculation of G in terms of 13 for arbitrary P and Q would seem to be worthwhile. The
contributions to M from the large arcs O:!i< 8 < 13 + Tr/2 and 13 + Tr/2 < 8:!i< Tr, respectively, are
given by (7) with a = ±(f3 ± Tr/2)/2, Fa = P cos a ± Q sin a and F't = +P sin a + Q cos a. The
dependence of energy release rate G on 13 follows from application of M = 0 and is given by

1- p2 { A + B A - B A - B
Gh = -- cos 13 + +-;-:-=:----:=---~

2E [(Tr/2) -13 +cos 131 [(Tr/2) - 13 - cos 131 [(Tr/2) +13 +cos 13]
+ A+B } (17)

[(Tr/2) + 13 - cos 13]

where

(18)
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Fig. 5. Nondimensional energy release rate vs angle fJ for the elastic crack problem represented in
Fig.3(d).
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It is easily verified that for the special case fJ = 0, Q =°the result (17) reduces to the stress
intensity factor result

(19)

which was obtained by Stallybrass [11] by direct application of integral transform methods. The
equivalent mode II result for fJ = 0, P =°which is reported in [8] may also be extracted from
(17). Typical nondimensional graphs of G versus fJ are shown in Fig. 5. For Q= 0, G has a very
shallow maximum at fJ = 0, while for any Q > 0, G becomes infinitely large as fJ -+ 1T/2. This
suggests that if a crack approaches a free boundary in the presence of a shear force then there
is a tendency for the direction of crack growth to become parallel to the boundary. Such
behavior was reported by Kinra and Kolsky[12] in their experiments on the fracture of brittle
plastic beam.

DISCUSSION

There are, of course, many other crack problems which satisfy the main conditions for
application ofthe M-integral approach, i.e. a stress singularity of order ,-1 as ,-+0 and/or as
, -+ 00 and radial boundaries with suitable boundary conditions. Problems were chosen for this
discussion simply to illustrate the range of the approach.

It should perhaps be noted that it is not essential that the origin of coordinates be located at
a particular singular point of the stress field, as was the case in all of the examples above. If
coordinates are chosen such that the singular point of the stress field is at Xjo, then the analysis
proceeds in the same way except that the conservation law M =°is replaced by M - xjoJj =0,
where Ji is given in (2). This change in form of the conservation law is due only to the
coordinate transformation, and the elastic field is still presumed to be non-singular everywhere
within the contour C.

Finally. certain inherent limitations of the approach are recalled. First, if the general
conditions for application of the method are satisfied but two crack tips are involved, neither of
thich is at the origin, then the division of the total energy release rate between the two crack
tips cannot be determined. Likewise, under mixed mode I and mode II conditions, the total
energy release rate may be determined but the individual stress intensity factors for each mode
cannot be established. In the case of problems like that represented in Fig. 3(d) it would be
desirable to include rigid rotations at infinity to simulate transfer of bending loads across the
unfractured ligament. However, it appears that if such a rotation is included then the moment
required to produce this rotation for any given problem must be known. Determination of this
moment is equivalent to a complete solution of the problem[13] which defeats the purpose of
the present approach.
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